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Jets In vacuum

f
+

High pr partons produced early in the collision fragment
and hadronize into a spray of particles called jets.
Jet production calculable in pQCD.

Y
Sensitive to a wide range of physics scales.

p*p
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Jets as a probe of QGP

+

f
We call this energy loss jet
quenching.

\ As these partons are produced

early in collisions, jets are the
p+p A+A ideal probe of QGP evolution!

Use pp as reference where any difference is attributed to in-medium effects.
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Expected signatures of jet quenching

Parton energy loss leads to a suppression of jet yields.

Modification of the internal structure of the jet.

out of cone radiation

original parton

Medium response adds wake of soft

Jet widens due to momentum particles to the jet.

broadening.

Modification might differ depending on path through the medium.
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Observables of jet guenching

Experimental observables of jet quenching fall into 3 main categories, each probing a different
expected jet gquenching effect.

1. Overall Energy Loss: Suppression of inclusive jet yields (more on this later)

2. Modification of the internal structure of the jet. | |
3. Differential energy loss

Jet Splittings Fragmentation Function
W T S Y - Correlations of jets with other objects

Jet

Jet Mass

Jet-hadron
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https://arxiv.org/pdf/1808.03689.pdf

Reconstructing jet p

Reconstruction of inclusive jet p in heavy-ion collisions is made difficult by the large
fluctuating background from the

Fluctuations can be on the order of jet itself — hard to distinguish energy from the jet.

Sometimes, upward fluctuations are

reconstructed as jets creating “fake jets”. 01 E, [GeV] ~ ATLAS
leading jet

leading jet

Even by eye,
subleading jet Z
hard to find!!

subleading jet
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Area-Based Method T

©
% _ Fit: (-3.3+0.3) GeV/c + (0.0623+0.0002) GeV/c x Ni'::ut
Area based method: Pedestal subtraction of = 200 oo g

event-averaged momentum density.

504 £ [GeV] ATLAS -
i 100— ¢
40— g iy Pb-Pb \s = 2.76 TeV
- - entries
30—5 : ’“"\w\_‘\ 0-10%
20_- -__i S o °l j;l ' l lzéool 1\ .
) % 1000 3000 3000
N::;vut
P 1T,rec P 1T,raw P \

1. Estimate and subtract the pedestal

2. Leading track bias to remove fake
contributions

3. Correct for residual fluctuations via unfolding
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https://link.springer.com/article/10.1007/JHEP03(2012)053

Nuclear Modification Factor: R, 4

We measure the suppression of jet yields by the nuclear modification factor (K, »)-

2 A7PbPb
| 4N
Novent  dprdy Ratio of yield in Pb—PDb to the

Rpyp = ——mmm — = . expected yield if no hot or dense
®— «— 6@ <T > d*o,e; medium was present.
AA dprdy
R A <1 — Suppression Old: Suppression is a signature of QGP formation.
R, » =1 — No Modification New: Use measurements of suppression to

further understand QGP medium.
R » > 1 — Enhancement
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Measurements of inclusive jet R, 5

Many measurements of the inclusive jet R
for R = 0.4 jets in central 0-10% collisions.

STAR Au+Au oy = 200 GeV ALICE See suppression across many different scales!
charged jets, anti-k ¢
[ 7. uncentainty Phys. Rev. C 101 034911 (2020)
a uncertain :
= N ATLAS
uric. i
R ——— arXiv: 2006.00582 - Pb-Pb 0-10% Sy = 2-02 TeV EXPERIMENT PhyS Lett. B 790 (201 9) 108
1.2 pp Vs =5.02 TeV <
3 Ih-Lorp i rame e <03 P57 GeVie T ooF ATLAS E
Qmé 1t~ - e e e e S e T i l - 1‘_LBTO """"""" i E anti-k, R=0.4 jets, |s,=5.02 TeV =
central (0-10%) - [ SCET, % ALICE 0-10% 0.8F —
0.8 | [] Hybrid Model, L,ss = 0 Correlated uncertainty — =
"~ . JH%I\?\;ELMOdel',I Lres= il/\ngCT)S ) Shape uncertainty 0'75_ =
- , recoils on, 4MomSu _— | — ——
0.6 " [ JEWEL, recoils off 0.6 ++j__t:"=i#ﬂ _E
E 0.4] 0.4E E
: i — 0.3F Data_ =
- : T — o 9=1.8 _ o —
+  —=>~UNBIASED 0.0l 0.oF SOETS g=2_2 0-10%, lyl <2.1 3
' 1 “F W SCET,NLO 2015 pp data, 25 pb™ 3
5 10 15 20 25 30 35 ol o o 0.1 EQ 2.76 TeV 2015 Pb+Pb data, 0.49 nb™' "=
Ch O: | | | | | | | | —
P T jet (GeV/c) 0 S0 100 GeV/ 100 200 300 500 900
Pr (GeVic) jet
et p= [GeV]
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https://cds.cern.ch/record/2698506?ln=en
https://arxiv.org/pdf/2006.00582.pdf
https://www.sciencedirect.com/science/article/pii/S037026931830995X?via=ihub
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.101.034911

Where are we now Iin ALICE? (areabased method)

Inclusive Jet Charged Particle Jets
Measurement Summary 16— < -
< [ ALICE Pb-Pb 0-10% sy =502TeV {1 of 1.4-ALICE R=04
| | Lower py Cutoff (GeV/c) [ 4] crargediets Antik, I, <09-R, > 5 Gevic - - Pb-Pb 0-10% |5, = 5.02 TeV
R Charged Full Jets 12/ POWHEG+Pythia8 reference Shepe unosriaiey : 1.2 oo \s =5.02 TeV
Part|C|e JetS 1 : Correlated uncertainty .: B njetl <03 plTead,ch > 7 GeV/c
e ] ) I
i - . — LBT .
o T 20 51 o | E L, e
0.3 50 60 :_ _: 0.8 N H));bfid ModeI: L:Z=_2/(TCT) Shape uncertainty
0 4 N/ A 60 0.6 - - g JEWEL, recoils on, 4MomSub
' it Eaeaee : i
021" ALICE Preliminary N 2 : 8::23 . 0.4-
. |
We see a suppression! Py o (GEVIC) 0.2f
O I | | | | | | | | | | | | |
: : : 0 50 100
ALICE benefits from precise tracking at low p-. p. (GeV/c)
T T,jet

Prevented from going lower by large fake jet contribution at these low jet prs!
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Pushing to low p+ and large R

Many differential measurements of nuclear modification separate out energy loss effects.

out of cone radiation Momentum broadening causes energy to be lost
outside of the jet cone — R, A \

original parton

Recover energy deposited in the medium — Ry 5 /

INn cone radiation

Recoiling medium adds energy to jet cone =Ry, X

Wider jets have more complex structure, which could
R experience more quenching — Rya N\

N Different jets with different structure experience these
effects differently

—measure dependence of R, » on pr and R!

Remember: Low p+ and large R are difficult regions to study with inclusive jet probes.

Hannah Bossi BNL Nuclear Physics Seminar
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https://arxiv.org/pdf/1907.12301.pdf

What does theory say?

R rdecreases with R — as R increases, effect of out-of-cone energy

loss and quenching of complex internal structure increases!

1.0
Phys. Rev. Lett. 124, 052301

Jet Function

"'

Hybnd mOdel L ﬁ,z:;i = non-eq. contrib,
7 =10.06 anti-kp, nl < 2
with no medium _) | BotSmm embnln
contributions sos] R=29 0-10%
< Hybrid Model

What happens if N e R 010 — r— o
we add in medium , é 0.2 1 — R-oa0
effects? ; e .
100 /5 =5. m \T.\ ll')(fu') 0.0 2 : : :
Jet prpwev) | 250 500 750

What do other models say?
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https://arxiv.org/pdf/1907.12301.pdf

R, sincreases with R — as R increases, effect of

recoiling medium and recovery of lost energy
becomes stronger!

Phys. Rev. Lett. 124, 052301

1.4

'_'_'_'" ¥ L
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arXiv: 1701.07951

| Inclusive, PbPb (2.76 TeV) (b) Z
[ 4= 1.7 GeV¥/fm ‘
| e = 1.0 GeVie _
L ped> 1.0 GeVie —

e ® R=0.3 (CMS, 0-5%)
= R=0.3 (Shower+Hydro) -

=== R=0.3 (Shower)
= R=0.6 (Shower+Hydro)

- === R=0.6 (Shower)

- CC N U = R=0.9 (Shower+Hydro) ]
: === R=0.9 (Shower) |
T e
S0 100 150 200

pist (GeV/e)

Need to come up with new strategies to extend
experimental measurements to lower in p+ and larger in R!
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What does theory say?-

1.8

- [T T 1 [T T 1 [T T | [T T 1 ’ [ | [T T | [T 1T 1 .
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https://arxiv.org/pdf/1509.07257.pdf
https://arxiv.org/pdf/1907.12301.pdf
https://arxiv.org/abs/1707.01539
https://arxiv.org/pdf/1701.07951.pdf
https://arxiv.org/pdf/1907.12301.pdf

What does experiment say?

CMS .P.r.el.mw?r.y. - (o = 502 ToV CMS goes to high p

cc:s 500 S p < 1000 G'ev PbPb 404 ub™, pp 27.4 pb™ Now measure up to R = 1.0!
3150 - . .
- = CMS Small increase in R, , with
3 — HYBRID w/ wake increasing R observed.
an — HYBRID w/o wake
_ : 1YBRID w/pos wake Looking at R-dependence is a
0.5[ antik,, Iy |<2 0-10% ] o0 good way to distinguish
I Jet | LBT w/ showers only
N I models!
02 04 06 0.8 1 LBT w/ med. response
Jet R CMS-PAS-HIN-18-014
CMS: High p, Large R, Full Jets HP Talk by Christopher McGinn

Want to see low py as well, what could ALICE do?
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https://arxiv.org/pdf/1509.07257.pdf
https://cds.cern.ch/record/2698506?ln=en
https://indico.cern.ch/event/751767/contributions/3771094/

What could ALICE uniquely do?

_ - A ALICE has the ability to measure at low p, limited
pT,rec T pT,I‘aW P by background subtraction.

Current mapping from pp ..o, = P rec IgNOreS
504 E_ [GeV] ATLAS

: — any fluctuations in the background
40—

— neutral part could fluctuate differently
— background is uncorrelated with jet signal

Ideal mapping from py ..o = P rec WoUld be
complex and would differ for each jet

— difficult to derive from expert knowledge

Could machine learning help?

Hannah Bossi BNL Nuclear Physics Seminar 15



(Brief) intro to machine learning

Machine improves performance by learning from experience, while being robust to obstacles.

Two different types of tasks

1. Classification: group 2. Regression: Assign a predicted value

objects in predefined classes. to each sample.

wh
a1 ' !
. !

Ex: Classifying dogs vs. bagels Ex: Predicting stock market prices

Hannah Bossi BNL Nuclear Physics Seminar
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(Brief) intro to machine learning

Two different types of learning

2. Unsupervised Learning: algorithm
1. Supervised Learning: finds structure in data without knowing

algorithm learns from a labeled the desired outcome.
set with the “true values”. [ —

GeV 25
QCD Jet W Jet 20
~ | 0o = 0= 15
b s g 0 8 10
10 10 2 5/
g 1 é 1 3 0 A
0.5 . i AL )
S 10' s 0.5 10.1 6 *-’ ',—"7,'?
= 102 = 10° Runsas:
; , 3 5
2 0 10 5 o0 10°
é 10d é 104 4 S II I
5 » -
03 " 10° A TUITERAS
& 0.5 CUAAAAA
10 106 ."*.‘ ’,’.' '..’.’.
r T e
100 10" e
10
10° eens
: 10* | Sevautee
-1 -0.5 0 0.5 1 - .0 0 1 10° T
[Translated) Pseudorapidity (1) ' ' S y
[Translated) Pseudorapidity (1) 5 -4

arXiv: 1150.05190

Ex: Distinguishing QCD jets and W jets

with jet images

Hannah Bossi
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arXiv: 0802.1188

Ex: Jet Clustering Algorithms
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https://arxiv.org/abs/0802.1188v2
https://arxiv.org/pdf/1511.05190.pdf

(Brief) intro to machine learning

Words of caution!
Put garbage in, get garbage out

— Choices for input variables should be
intentional, ML can’t replace domain knowledge

— Avoid correlated variables in training.
— Keep model simple, prevents overfitting.

cloudy days when you should
be finding tanks!

Overfitting example

Hannah Bossi BNL Nuclear Physics Seminar
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https://arxiv.org/pdf/1511.05190.pdf

Machine learning background estimator

Use machine learning (ML) to create a mapping to correct the jet for the background!

ML
—_—

Does this method reduce residual fluctuations, allowing

the measurement to be pushed to lower p with
reduced systematic uncertainties?

Does using constituent information in training
introduce a fragmentation bias?

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)

Hannah Bossi BNL Nuclear Physics Seminar
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904

Process

Training (PYTHIA
fragmentation)

Train on “hybrid event”
created by embedding
PYTHIA jets into Pb-Pb

Background

Can either be Pb-Pb
data or thermal toy
background.

Key Is that this
background is realistic.

Hannah Bossi

—

ML Estimator

BNL Nuclear Physics Seminar

Testing

Apply ML estimator to
hybrid events not used

In training.
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ML for this analysis

Regression task where the regression target is the detector level jet pr.

Supervised learning, we provide the PYTHIA true p in training.

Training sample 10%, testing sample 90%.

Implemented in scikit-learn. Default parameters used unless otherwise specified.

Shallow Neural Network Linear Regression Random Forest
Shallow, 3 layers with Normalization set to Ensemble of 30 decision trees.
[100, 100, 50] nodes true by default. Maximum number of

ADAM optimizer, stochastic features set to 15.
gradient descent algorithm.

Nodes/neurons activated by a
RelLU activation function.

Hannah Bossi BNL Nuclear Physics Seminar
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Features for training

Feature Score | Feature | Score
Jet py (no corr.) 0.1355 | Ptconst | 0.0012
Jet mass 0.0007 | pfconse | 0.0039
Jet Area 0.0005 | P7const | 0-0015
Jet p; (area based corr.) | 0.7876 | Pt conse | 0-0011
LeSub 0.0004 | p? . onse | 0-0009
Radial moment 0.0005 | p?eonse | 0.0009
Momentum dispersion 0.0007 | Pfconst | 0.-0008
Number of constituents 0.0008 | pFconst | 0-0007
Mean of constituent pys | 0.0585 | pt.ons: | 0.0006
Median of Constituent pys | 0.0023 | p;%onee | 0.0007

Ask ourselves two questions before
selecting a feature:

1. How important is the feature
to the model? — Feature Scores

2. How correlated is the feature
with other features?

Iteratively remove unimportant or highly correlated features, we are prioritizing a simple model!

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)

Hannah Bossi

BNL Nuclear Physics Seminar
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904

Features for training

Ask ourselves two questions before

Final List: Prioritizing a simple model! selecting a feature:

Jet pr (area-based corrected)

Number of Constituents within

Jet Angularity

pt of 8 Leading Constituents

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)

Hannah Bossi

1. How important is the feature

to the model? — Feature Scores
Jet

2. How correlated is the feature
with other features?

BNL Nuclear Physics Seminar
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904

Charged vs. full jets

Today we will show charged and full jet results!
Charged particle jets — contain the charged component of the jet

— measured with tracking detectors

Full jets — contain charged and neutral components of the jet
— measured with electromagnetic calorimeter |

— |imited to fiducial phi acceptance

Full jets show greater alignment with the
traditional definition of a jet.

Experimentally challenging as we are using
constituents from two different detector components.

Hannah Bossi BNL Nuclear Physics Seminar
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Features for training

Ask ourselves two questions before

1. How important is the feature

Jet pr (area-based corrected)
to the model? — Feature Scores

Number of Constituents within Jet

Jet Angularity

2. How correlated is the feature

pt of 12 Leading Constituents with other features?

For full jets we need more constituents in training to reflect increase in constituents in the jet.
Constituents are now both charged and neutral.

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)
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https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904

Evaluating the performance

5pT = PTrec — PT.true

Charged Particle Jets

Are we getting back to the “truth” (matched 25
: ~ PYTHIA + Pb-Pb 5.02 TeV
PYTHIA detector level jet)?  Charged jets, anti-kr, [n_| <09 - R
20— ALICE Performance

~ 0-10% central
~ P ML-based
- [ Area-based

15— 30-50% central

Narrow op+ — Reduced residual fluctuations
Phys. Rev. C 99, 064904 (2019)

Standard deviation (GeV/c)

I R I ‘ I I | [ ‘ I I N ‘ I N N

z —1 T T 7T l T . 7.7 ] T 1 71 7 ] T T 7T " ] [ " _ | § ML_based
@ 0.14~ pyTHIA 2.76 TeV + thermal toy —e- Neural network . < Area-
o = Charaed anti-k. iets A = 0.4 —4- Area-based method - - S Area-based
© ), T2 IR RNy JR 1 »- Random forest — — -
£ 0 1t P = 40-60 GeV/c —+- Linear regression - 10—
g F : :
© 0.08— w— i
o - - 5
0.06— = -
0.04— -~ :
- - |
0.02}— — 0 0.2 0.4 0.6
- - Jet resolution parameter R
% 30 40
i e - nue . GeV/C - - = mgm
Charged Particle Jets Pranin” Pricn s (9€Y1) Residual fluctuations significantly

reduced!
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Evaluatlng the perf()rmance
5pT_pTrec_thrue -------------------- e -

i ALICE Performance

- PYTHIA + Pb-Pb F 5.02 TeV
Are we getting back to the “truth” (matched
PYTHIA detector level jet)?

_ Full jets, anti-k-, 74, |< 03
Narrow op+ — Reduced residual fluctuations

N
-

- 40 < Pl < 120 GeV/c

~ mArea Based, 0-10%
=ML Based, 0-10%
nArea Based, 30-50%
uML Based, 30-50%

—i
Ol

0-1 L] L] L] l | ] L] " l ] | ] | ] I L] " " I L] | ] | ] I

Standard Deviation (GeV/c)

> -
2 O0E-PYTHIA + Pb-Pb {5 =5.02TeV, 0-10%  —+- reaBased o o 10
8 0.08 = Full jets, anti-k;, R = 0.4, M| < 0.3 _e— Neural Network -
> 007 ALICE Performance A Mean: 0.81 , Width: 5.35 :
= ' 7\ —=— Random Forest
S o0sE= 0 <Py 4 <120 GeVie ) Mean: 0.01 , Width: 5.52 i
© | —+— Linear Regression 5 B
-8 0.05 Mean: -0.95 , Width: 5.83 i
o 004 I
0.03 0 t)gg :
. v \ Jet Resolution Parameter R
04 44 - % L L | 1 L N i 044 4 -
—60 —40 -20 0 0 40 60
P oo Pr 4o [GEV/C] Residual fluctuations significantly

reduced!
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Results - inclusive jet spectra

Charged Particle Jets

‘.:\ T T ’ T T ‘ T T T l T T ! T T | T T ‘ T T
~ B n L 10_3 — | | | | | 1 1 | 1 1 | 1 | | | | - n -
S 4 ALICE Pb-Pb 5.02 TeV, 0-10% T = | | | | | =
8 '° © Charged jets, anti-ky, [n_|<0.9- R -2 - ALICE Pb-Pb \/s =5.02 TeV, 0-10% N UnfOldmg Systematics
= - jet - > i . NN i i
.5 MLestimator trained on PYTHIA 18 _ Full Jets, anti-ky £=0.4,|n_|<0.7 - A _ dominate at lower P-
NZ% 210_55_ ®R=02 — o 104 _ ML Estimator Trained on PYTHIA -
Clas - =04 . E - e ML-Based . : o
e i ®H=06 i = - e e Area Based (pT ond > 7 GeV/c) - TraCk|ng eﬁ|C|ency
,_203 ) o~ i » 168 i " .
R - Z[C, . systematics dominate
S 19| & 100 == E .
- - = : == 1 at high Pt
107 — — — < . -
0 = —t e '\}Q _ ——— i
B :’: - T GC3 -6
— —@— — D 10 " —
P = ——— -
108 = N h 3 = < : - Lower py Cutoff (GeV/c)
- N_,, uncertainty not shown - - o
~ ALICE Preliminary i ] ALICE Preliminary | | R | Charged | Full Jets
10—91111||||||11||||11111111|1|11|1||1|1|1| 10_7 TN I T T N T N O T B T N P&fthleJetS
20 30 40 50 60 70 80 90 100 40 60 80 100120 140 1 59 20 40
_(GeV/c :
P S Pr i (G8VI0) 170 3 50 60
0.4 40 40
0.6 50 N/A

Able to extend measurements to lower p and larger R!
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What does experiment say?

1.2

1

41— ALICE Pb-Pb 5.02 TeV, 0-10%

||||ll||||||||‘|||I‘Il||‘|||||ll|

~ Charged jets, anti-k; |17 |< 09-R

__ ML estimator trained on PYTHIA
- ‘¢ R=04

| R=0.6

mm 7 ,, normalization uncertainty

||I|IIIIII'III‘III

ALICE uses a machine learning based
background correction.

Able to extend measurements of the R, 5 to

0'8; low pr and large R.
0.6
0.4 —— Advantageous to extend method to full jets!
0.2 B
- ALICE Preliminary
%Ol B |4!0| - |5|O| - |6|O| - 7|O| - |8|O| - |9|O‘ - |100
Pr o o (GeV/ce)
Phys. Rev. C 99, 064904
ALICE: Low p+, Large R, Charged Particle Jets HP Talk on ML R, o
ALICE
Hannah Bossi BNL Nuclear Physics Seminar
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https://arxiv.org/pdf/1509.07257.pdf
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.064904
https://indico.cern.ch/event/751767/contributions/3771080/

Charged Particle Jets

RAA

[—y

0.8

0.6

0.4

mm 7 ,, normalization uncertainty

1.4— ALICE Pb-Pb 5.02 TeV, 0-10%
~ Charged jets, anti-k, R = 0.4, |njet| < 0.5

{ o ML estimator trained on PYTHIA
- & ML-based

I Area-based (,oT

0.2

III‘III‘III‘III’III

ALICE Preliminary

IIIIIIIIIIIIIII

Hannah Bossi

I I | I I | I I | | 1 [ | t I I ’ | 1 [ | | [ 1 | |
%O 40 50 60 70 80 90 100
GeV/c)

pT, ch jet (

AA

R

——t
N

1.2

0.8

0.6

0.4

0.2

Results - jet R4z @

RAA
o— «—o

ALICE Pb-Pb \/SNN =5.02 TeV, 0-10%
Full Jets, anti-k+ R = 0.4, |njet|< 0.7-R
ML Estimator Trained on PYTHIA

® ML-Based

e | Area Based (pT > 7 GeV/c)

Illllll*lllllll

ALICE Preliminary

20 40 60 80 100 120

14

P o (GeV/c)
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d2 NPbe

jet

1

N, event dp Tdy

See significant jet
suppression down
to 40 GeV/c!

Systematic
uncertainties are
reduced.
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Fragmentation bias

Learning on constituents introduces a fragmentation bias.

D5
. ATLAS v *'| <2.1 anti-k, R=0.4 jets
N
QQ 2; ] 126 < pI' < 158 GeV, |5y, = 2.76 TeV -
- @ 126 < pf' < 158GeV, |s,,,=5.02TeV -
g We learn on a PYTHIA fragmentation.
11 We know that fragmentation in heavy-ion collisions
: IS modified by the presence of the medium.
. Pb+Pb, 0-10% |
i WO e S We want to investigate how this impacts the
10 10 21 final result we get with ML!

Phys. Rev. C 98, 024908 (2018)

Hannah Bossi BNL Nuclear Physics Seminar


https://arxiv.org/pdf/1805.05424.pdf

Quark vs. Gluons

Investigate fragmentation dependence by
checking model performance on jets with
different fragmentation.

Quark jets have less
constituents with a harder

fragmentation— narrower.

Gluon jets have more
constituents with a more even

distribution in energy — wider.

Quark Jets

Gluon Jets

L} L I L

—
N

_Charged anti-k; jets R=0.4

pe

- piue  =40-60 GeV/c
" T, chjet
C  Neural network estimator

o o ©
o ©
Cb'.;l\)

llllllllllllllll

Probability density

0.06
0.04
0.02

] ) I I 1 1

. PYTHIA 2.76 TeV + thermal toy

1 l 1 L}

Lo
oL

See a small bias relative to the inclusive case!
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Using JEWEL

Investigate fragmentation dependence by
checking model performance on jets with
different fragmentation.

Use JEWEL, a quenched MC designed to
mimic heavy ion quenching effects.

Vacuum JEWEL ~ PYTHIA (nominal case)

Bias similar to Q/G observed.

JEWEL Ys = 5.02 TeV, 4MomSub
PbPb, 0-10%
126<p’:‘<158 GeV/c

IIII 1 ] 1 Ii]lll

" [#]ATLAS b
0.5 Ll arXiv: 1906.05513
= | JEWEL _

! 34139l ) 344 a9l
107 10~ Z 1)
2> T+ rr+~r [ rrrr [ rrrrr [ rrrrr| T [ T [ T T T 1 -
@ 0-14 JEWEL PbPb 2.76 TeV + thermal toy 4 Vacuum -
8 0.12[- Charged anti-k; jets R = 0.4 #— Medium E
& i Pronje=40-60 GeVic . E
®  F Neural network estimator -
S 0.08F =
ol — -
0.06 =
0.04 =
0.02— E
O:l P T T N SR N R —
-40 -30 30 4

Hannah Bossi BNL Nuclear Physics Seminar

Pt chijet

r t
onior” Penjo (GEV/

\2)


https://arxiv.org/pdf/1906.05513.pdf

Toy model studies

We also study a toy model with three different ways to
alter constituents of the jet, changing the fragmentation.

Hannah Bossi BNL Nuclear Physics Seminar
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Modification to the fragmentation function

Leading 8 particles Inclusive particles
_04-0_" L o ' ' D N®) 14 ' ' T T T T T ] l ' T T T T T ]
<, - ALICE Simulation Fractional 10% : L - ALICE Simulation Fractional 10%
—— - Unmod. & : ' - (- I Unmod. & ) 0,
5 35F 00 <pt jet < _120 GeV/c, Mostly in cone . S 1ol 60 < pr"ee < 120 GeV/c, Mostly in cone
O [ Charged jets anti-kr Fractional 10%, O [ Charged jets anti-ky Fractional 10%,
& 3.0 R =04, 177jet‘ <09-R . Mostly out of cone - & L R=04 | <09—-R ® Mostly out of cone
o~ - Leadi ight particl . C  10f 1o / 7
— - Leading eight particles B BDMPS : — | All pa_r:cles ®E  BDMPS
O ) - _
D 2.0f o |
= ! — -
Ay S 6f i
O 1.5¢ _8 I =
= | s |
1.0} T ]
5 -+ '
0.5} 21 +++ : E!E i
00 g T N U am—
Z Z

Toy model modifications indeed modify the fragmentation, some modifications are more
extreme than others.

8 leading particles are what we chose to train on.
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- toy
Looking at R AN
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—

toy

R _ _Moadified
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- e W/0 embedding ALICE Simulation

" . embedding in thermal events  @nti-ky charged jets
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- BDMPS-Motivated
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1. Modify PYTHIA jets

2. Apply ML trained on
unmodified PYTHIA
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toy __
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o] E - e W/0 embedding ALICE Simulation
S= [ .« embedding in thermal events ~anti-kr charged jets
|2 1-2[ ML correction trained |77 < %,9 O/Z
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I A
> < N
gz [
T 0.8
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Here, we focus on the difference between
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Pr en jet (GeVic)

Embedded (ML).
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Largest difference for the mostly in cone case.
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LOOking deeper Into R:y 1. Modify PYTHIA jets

A 2. Apply ML trained on
ML has the same target p¥LEIJIA — p,?ggn}g‘g‘ unmodified PYTHIA
— Whenever energy is lost out of cone p%’LEEHA 7 pﬁﬁéﬁ‘ 3 Look at R — Modified

AA Unmodified

Every constituent has lost 10% of its energy in cone. g[8 [~ wio embedding ALICE Simulation
%’%1 2:+embedding in thermal events antl-lT:]cTir%eg Je’g
O|1Q 1.2 ML correction trained ot >
, , , , _ S E - on unmodified PYTHIA - H=04
The ML Is trained using only leading 8 constituents St | S DU SR
for the unmodified case, unable to recover energy % e
lost in cone. !
. . _ . 0.6— = "
— ML Is picking up on energy loss, just I
energy lost in cone. 041
o | o 0.2
Would we see similar biases training on :
the modified toy? % 50 60 70 80 90 1
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lllustration of potentlal bias

<
Train on the modified toy model and apply D:<E

to data; measure bias.

1.2

Method is relatively robust to the explored

blases!

Lower pr is a largely unexplored region.

0.8

0.6

0.4

Machine learning provides us with an

opportunity to study this.

Hannah Bossi

0.2

_ ALICE Preliminary Pb—Pb |'s,,, = 5.02 TeV, 0-10%
—FuII Jets, anti-k: R=0.4, |n |< 0.7-R

jet

~ ML Estimator Trained on PYTHIA

e ML-Based
e | Area Based (p > 7 GeV/c)

. T, lead
- == Fractional Collinear

BDMPS-Motivated

IIIIIIIIIIIIIIIIIII—
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ML Fragmentation Bias Studies
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Comparing to models

Keeping previous studies in mind, let’'s compare to models!

DE'LZ

0.8

0.6

0.4

0.2

ALICE Preliminary Pb-Pb ys = 5.02 TeV, 0-10%
Full Jets, anti-k; R=0.4, 1 _|<0.7 - R

ML Estimator Trained on PYTHIA

e ML-Based
e | Area-Based (p

> 7 GeV/c)

T, lead

» Fractional Collinear
= BDMPS-Motivated
Fractional Large Angle

ML Fragmentation Bias Studies

50 100

P ” (GeV/c)

= Jewel, recoils off
SCET, (rad + coll)
Hybrid Model w/wake

Jewel, recoils on
— | BT

Model Comparisons

50 100
Py ” (GeV/c)

Aiming to constrain models at low p+ with new
measurement technique!

Hannah Bossi
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JEWEL.: Scattering and
radiative energy loss, /

without recoiling medium.
JHEP 1707 (2017) 141

SCETg: Interactions with
medium mediated by

Glauber gluon exchange.
JHEP 07 (2019) 148

Phys. Rev. Lett. 124, 052301

LBT: hydrodynamic
medium, jet-medium

Interactions, recoills.
Phys. Rev. C 99 (2019) 054911
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https://link.springer.com/article/10.1007/JHEP07(2019)148
https://arxiv.org/pdf/1907.12301.pdf
https://arxiv.org/pdf/1809.02525.pdf
https://arxiv.org/abs/1707.01539

Conclusions

Low pr and large R are less studied regions with inclusive jet probes in HI collisions due to
difficulties created by the large fluctuating background from the underlying event.

These measurements are useful in separating out different energy loss effects.

We present a novel machine learning based background correction, which allows for the
extension to lower p and larger R than previously possible in ALICE.

See significant jet suppression down to pr accessible by RHIC.

We study the fragmentation bias introduced by training the neural network on the
constituents from PYTHIA

— do this using a toy model with three different modifications

— estimating the effect of these modifications on the R, A

What’s next?

Hannah Bossi BNL Nuclear Physics Seminar
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Where do we go from here? Mo

Our toy models are only simple tests, how do we get closer to the true case?

| AEVSLAPE
— Train on a quenched MC: JEWEL, JETSCAPE, etc.

Compare low p results with sPHENIX and STAR! SPHE

How far can we go in R with ALICE?

o — There are also many other
Charged particle jets: Limited to R = 0.9 T T methods of reconstructing

max from eta acceptance of TPC.

jet pr how do these
compare?

acceptance of EMCAL.

Eur. Phys. J. C75 (2) (2015) 59

Let’s see how far we can go!

Phys. Rev. D 100 114023 (2019)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.114023
https://link.springer.com/article/10.1140/epjc/s10052-015-3267-2

What variables can we use ML for?

Jet mass is a good candidate for ML — binned in p-!

0.1

' 1 L] L l 1 ' ' l L) ' L l LJ L) L] I L] L] A ' L] LJ L] ' ' ' . l Al L} L l L] Ll '

_ PYTHIA 2.76 TeV + thermal toy —#— Area-based method

__Charged anti-k; jets R=0.4 —4— Neural network

- Py e = 40760 GeV/e —4+— True jet momentum

O
=
o

O
o
»

Probability density
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Already see good performance!
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|

IIIIWI
1 1 18

Jet mass (GeV/c?)

N
-
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Qo
—
o
—
N

0

Jet Splittings

Next frontier: Could we use ML
for substructure??
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Stay tuned! Thanks!
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Backup
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Analysis detalls

Inclusive Pb—Pb jet sample at , /sy = 5.02 TeV L ~ 250 ub™!
with the ALICE detector in 2015.

anti-k+ jets with various resolution parameters R and centralities

Charged particle jets — contain the charged component of the jet

— measured with tracking detectors

Full jets — contain charged and neutral components of the jet

— measured with electromagnetic calorimeter

— |limited to fiducial phi acceptance
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Other Theory Predictions

See Daniel Pablos’s Talk at HP

B T T T o e
R=0.1 m
0.8 F R =0.2 soumm w/o wake 1 w/ wake
_ R=0.3 |
ft=0.4 m— AuAu, /5 = 200 AGeV
0.6 F R=0.6 0-10% R UAlU, /8§ = €
< | 0 | |
S 0al | - | BT arXiv: 1809.02525
1
0.2 | anti-k, |y|<2.1
0 | j l 1 | 1 , , ‘ Al ~~ LBT Pb+Pb 0-10 % Vs=5.02 TeV
10 20 30 40 50 60 10 20 30 40 50 60 . o _ | ,
Jet pr [GeV] Jet py [GeV] 3 CMSPb+Pb0-5% VIs=2.76 Te\

Factorization Phys. Lett 122 (2019) 252301

< - —_— R=0.1 —R = (.8 e 1 . ' w/lo recoils
< 06' v . o
0ol vy = 5.02 761 R=04  $ATLAS
S R=06  AALICE

0-0 200 400 600 800
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https://arxiv.org/pdf/1809.02525.pdf
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.122.252301
https://indico.cern.ch/event/751767/contributions/3771152/

Inclusive jet K, ,: theory summary

Theo - 5.02 TeV
antik,. iy 1<2 § R=0.2

[ SCET w/o coll. E-oss
= HYBRID w/ wake MARTINI Coherent antenna BOMPS

e HYBRID w/o wake JEWEL Ui and Vitev == LBT w/ showers only
HYBRID w/ pos wake JEWEL wi'o recoil[] Factorization LBT w! med. response

PYQUEN
PYQUEN w/ wide rad. - CCNU coupled jet-fuid w/ hydro

“x 1000200 o (Gev)moo 200 % From Molly Taylor’s talk at QM 2019
.
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https://indico.cern.ch/event/792436/contributions/3535711/

R dependence from theory: A Summary

Theory (Sy = 5.02 TeV

200 < p;' <250 Gg 250 <p’ <300 GeV.. | 300<p <400 GeV

<«

oC

~ 400 < p*' < 500 GeV 500 < p” < 1000 GeV anti-ky, n_| <2 0-10%
- é T T 1

oC

== Factorization
" SCET wio coll. E-loss
U and Vitev
Coherent antenna BDMPS
wee HYBRID W/ wake
w HYBRID wi/o wake
HYBRID w/ pos wake
- MARTINI
- PYQUEN
PYQUEN w/ wiwde angle rad.
JEWEL
w JEWEL wi/0 recod
[T1LBT w/ showers only

LBT w/ med response
A . ' q ' H l

PR S B ST TE S S SR | R B ST R A
02 04 06 08 1 02 04 06 0.8 1 02 04 06 08 1
Jet R

From Molly Taylor’s talk at QM 2019
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https://indico.cern.ch/event/792436/contributions/3535711/

Comparing theory underlying mechanisms

With Medium Response Without Medium Response

JEWEL (recoils on): Medium
recoll without re-scattering.

Hybrid Model: Medium

JEWEL (recoils off)
SCETg

response via wake. Factorization

CCNU: Medium recoil and
back reaction with re-
scattering.

LBT: Medium recoll
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BDMPS Toy Model Modification

Y —~050” Modify the constituents of the jet
PO, w) = 0(606’3 [ e V2o by §ampllng the BD.I\/IPS gluc?n |
g q @ emission spectrum in the emission
angle and energy.

JHEP 0109 (2001) 033

For this study we use values of
g=2andL=7fmandp,,..=1.0.

Motivation behind this is to emit from a probabillity distribution dictated by quenching theory.
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https://arxiv.org/abs/hep-ph/0106347

What does experiment say?

< | aTLAS Preliminary |  Strategy 2: Make R = 1.0 jets using R = 0.2

-1 -1 .
1.0f-PRtER.1.72nb . pp 257.pb . 9.02. TeV o subjets.

¢ R=1.0 reclustered jets (this analysis)
m R=04(PLB790(2019) 108)

0.8 -

- b -
RETTITH S + -
® ©
S o ] “Conventional” Re-clustered
i R=1.0 jet R=1.0 jet
04 1<2.0 -
- S Small increase in R, , with respect to R = 0.4.
200 300 400 500 )
p_[GeV]
? ! ATLAS-CONF-2019-056
ATLAD ATLAS: High pr, Large R, Full Jets HP Talk by Anne Sickles
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http://cds.cern.ch/record/2701506/files/ATLAS-CONF-2019-056.pdf
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